This post has already been read 1267 times!

 

La loi de la gravitation ou loi de l'attraction universelle, découverte par Isaac Newton, est la loi décrivant la gravitation comme une force responsable de la chute des corps et du mouvement des corps célestes, et de façon générale, de l'attraction entre des corps ayant une masse, par exemple les planètes, les satellites naturels ou artificiels1[réf. incomplète]. Cet article présente essentiellement les aspects de la mécanique classique de la gravitation, et non pas la relativité générale qui procède d'un cadre plus général dans un nouveau paradigme.

Expression mathématique selon Isaac Newton

Deux corps ponctuels de masses respectives M_A et M_B s'attirent avec des forces de mêmes valeurs (mais vectoriellement opposées), proportionnelles à chacune des masses, et inversement proportionnelle au carré de la distance qui les sépare. Cette force a pour direction la droite passant par le centre de gravité de ces deux corps.

La force exercée sur le corps B par le corps A est vectoriellement donnée par

{F}_{A/B}= {F}_{B/A} = G\frac{M_A M_B}{d^2}

{M_A} et {M_B} en kilogramme (kg); d en mètre (m); {F}_{A/B} et {F}_{B/A} en newton (N)

où G est la constante gravitationnelle, elle vaut dans les unités SI, le CODATA 2010 2

 G\  =\ 6,67384\  \times 10^{-11} \ \mbox{N}\cdot \mbox{m}^2 \cdot\ \mbox{kg}^{-2}

Énergie potentielle de gravitation

Voici le calcul menant à l'expression de l'énergie potentielle de gravitation d'un corps de masse m à une distance R d'un corps de masse M produisant le champ de gravitation :

\Delta U_{\text{potentielle}}=\int_\infty^R \vec{F}\cdot\vec{dl} =  \int_\infty^R\frac{-GMm}{r^2} dr\cdot\vec{u_r}\cdot\vec{u_r}\ = GMm\int_\infty^R\frac{-dr}{r^2} = GMm \left[\frac{1}{r}\right]_\infty^R

D'où :

U_{\text{potentielle}}=-\frac{GMm}{R}

Cette formule est très apparentée à celle de l'électrostatique, qui est issue de la loi de Coulomb (qui est simplement la loi de gravitation universelle traduite en électricité). Ainsi, tous les calculs de gravimétrie sont transposables en électrostatique et réciproquement, ce qui est une économie de pensée considérable.

Énergie potentielle d'une sphère homogène

Soit un corps sphérique de rayon R et de masse volumique uniforme \rho.

On peut démontrer que son énergie potentielle interne U_{potentielle} est égale à :

U_{\text{potentielle}}= -\frac{3}{5}\frac{GM^2}{R}

Comments are closed.

Post Navigation